
Context-aware pre-trained models for intrusion detection systems
Mohamed Hashim Changrampadi

Doctoral Student

Chalmers University of Technology, Sweden

hashimm@chalmers.se

Abstract:
An Intrusion Detection System (IDS) is a crucial part of the cybersecurity infrastructure to

monitor network traffic and provide alerts on any suspicious or malicious traffic in real-time or near

real-time. These early alerts can prevent potential threats or mitigate the impact of detected

attacks. As cyber threats continue to evolve in complexity, the need for IDS solutions that can

dynamically adapt and effectively mitigate unseen attacks has paved way to Machine Learning

based IDS.

Recent advancements in computational hardware have significantly enhanced the

performance of machine learning-based IDS, potentially making them a better alternative to

traditional rule-based approaches in several application scenarios. Major advantages of ML-

based IDS are the ability to adapt and learn emerging threats, handle large and complex network

traffic, continuously learn from new data, and improve detection accuracy. However, training a

robust ML-based IDS often relies on massive training data with labeled attack samples. Several

IDS datasets are available which are built on test-bed environments that emulate normal and

malicious traffic; however, extracted features presented in the dataset make the AI model prone

to bias. Moreover, these AI models need high computational resources to be trained and may not

be suitable to be deployed in a resource-constrained environment.
These limitations can be addressed by training a foundation model to learn raw network

traffic and then fine-tuning the model for specific attacks or an infrastructure. We investigate

context-aware IDS that are trained on raw traffic data to learn subtle patterns of malicious traffic

with high granularity. Preliminary results show that the fine-tuned models perform equally or better

than the ML-based IDS model trained from scratch and consume less computational resources

on deployment.

