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1 Introduction

Theoretical work establishes that monitoring execution steps of systems against
logical predicates or invariants is highly effective for most security properties [8].
Recent work utilizes formal methods and invariants for smart contract security
[5, 11, 12]. Formal methods heavily rely on specifications and invariants which
define the correct behavior of programs. Therefore, high-quality invariants are
crucial for defining smart contract’s proper behavior. Defining invariants manually
can be costly and error-prone. Prior work in the field seeks to automate the
process by creating tools for invariant generation. Given the transparent nature
of dApps execution environment, recent work mines invariants using historic
executions [5]. Recent advances in Artificial Intelligence (AI) and large language
models (LLM) have also been applied to the field of smart contracts invariants
and specifications to synthesize invariants [4, 12]. Prior studies have assessed
the effectiveness of other methods for smart contract security, such as fuzzing,
static analysis, and symbolic execution. These assessments focused on their
capacity to mitigate real-world smart contract attacks. These methods, however,
have demonstrated limited efficacy in addressing real-world attacks [3, 13]. The
capability of current state-of-the-art tools for invariant mining in preventing
these attacks has not been thoroughly evaluated.

2 Invariant Mining

Invariant mining aims to extract system properties that hold universally over
the history of transactions of the deployed smart contracts.

Tools such as InvCon+ combine dynamic and static analysis methods to infer
and verify invariant properties [5]. The process of mining invariants typically in-
volves dynamic inference where Likely invariants are generated based on observed
transaction history. After generating likely invariants, these are then verified
statically against the contract code to confirm their correctness. This involves a
Houdini-like algorithm which iteratively refines and verifies invariants [1].

In this work we use InvCon+ specifically on smart contracts that are already
successfully exploited in recent years to determine if the tool can mine any
invariants that are useful in preventing the mentioned exploits [13].
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3 Invariant Synthesis

To enhance the security of smart contracts on the Ethereum main network,
our research proposes a novel approach to invariant synthesis leveraging large
language models, specifically fine-tuning CodeLlama model. We target require
statements in smart contracts to learn invariant patterns that protect contract’s
invariants against malicious and unwanted behavior.

As a first step of this work, we collected and published the largest dataset of
the source code of 3.2 million verified smart contracts on Ethereum [6].

Inspired by the enhancements seen in works such as the analysis conducted
using GPTScan [10] and RepairLlama [9], we adapt the CodeLlama model to
learn from the mentioned collected dataset [7]. The model fine-tuning focuses
on understanding and generalizing the logical conditions the require statements
enforce, thus capturing invariants that are implicitly defined by developers in the
source code. The goal is to build a specialized model for smart contracts written
in Solidity as the most used programming language for contract development [2].
This model is useful in many downstream tasks such as automatic program repair
and code synthesis.
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