
Smart Contract Invariant Synthesis and Mining

Mojtaba Eshghie1, Gabriele Morello1, Gustav Andersson Kasche1, Martin
Monperrus1, and Gerardo Schneider1

KTH Royal Institute of Technology, Stockholm, Sweden
eshghie@kth.se, morello@kth.se, gustavak@kth.se, monperrus@kth.se

1 Introduction

Theoretical work establishes that monitoring execution steps of systems against
logical predicates or invariants is highly effective for most security properties [8].
Recent work utilizes formal methods and invariants for smart contract security
[5, 11, 12]. Formal methods heavily rely on specifications and invariants which
define the correct behavior of programs. Therefore, high-quality invariants are
crucial for defining smart contract’s proper behavior. Defining invariants manually
can be costly and error-prone. Prior work in the field seeks to automate the
process by creating tools for invariant generation. Given the transparent nature
of dApps execution environment, recent work mines invariants using historic
executions [5]. Recent advances in Artificial Intelligence (AI) and large language
models (LLM) have also been applied to the field of smart contracts invariants
and specifications to synthesize invariants [4, 12]. Prior studies have assessed
the effectiveness of other methods for smart contract security, such as fuzzing,
static analysis, and symbolic execution. These assessments focused on their
capacity to mitigate real-world smart contract attacks. These methods, however,
have demonstrated limited efficacy in addressing real-world attacks [3, 13]. The
capability of current state-of-the-art tools for invariant mining in preventing
these attacks has not been thoroughly evaluated.

2 Invariant Mining

Invariant mining aims to extract system properties that hold universally over
the history of transactions of the deployed smart contracts.

Tools such as InvCon+ combine dynamic and static analysis methods to infer
and verify invariant properties [5]. The process of mining invariants typically in-
volves dynamic inference where Likely invariants are generated based on observed
transaction history. After generating likely invariants, these are then verified
statically against the contract code to confirm their correctness. This involves a
Houdini-like algorithm which iteratively refines and verifies invariants [1].

In this work we use InvCon+ specifically on smart contracts that are already
successfully exploited in recent years to determine if the tool can mine any
invariants that are useful in preventing the mentioned exploits [13].



2 M. Eshghie et al.

3 Invariant Synthesis

To enhance the security of smart contracts on the Ethereum main network,
our research proposes a novel approach to invariant synthesis leveraging large
language models, specifically fine-tuning CodeLlama model. We target require
statements in smart contracts to learn invariant patterns that protect contract’s
invariants against malicious and unwanted behavior.

As a first step of this work, we collected and published the largest dataset of
the source code of 3.2 million verified smart contracts on Ethereum [6].

Inspired by the enhancements seen in works such as the analysis conducted
using GPTScan [10] and RepairLlama [9], we adapt the CodeLlama model to
learn from the mentioned collected dataset [7]. The model fine-tuning focuses
on understanding and generalizing the logical conditions the require statements
enforce, thus capturing invariants that are implicitly defined by developers in the
source code. The goal is to build a specialized model for smart contracts written
in Solidity as the most used programming language for contract development [2].
This model is useful in many downstream tasks such as automatic program repair
and code synthesis.

References

1. Induction duality: Primal-dual search for invariants | Proceedings of the ACM on
Programming Languages

2. Solidity documentation (Aug 2023), https://docs.soliditylang.org/en/lates
t/, accessed: 2023-08-29

3. Chaliasos, S., Charalambous, M.A., Zhou, L., Galanopoulou, R., Gervais,
A., Mitropoulos, D., Livshits, B.: Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? In: Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering. pp. 1–13 (Feb 2024).
https://doi.org/10.1145/3597503.3623302, http://arxiv.org/abs/2304.02981,
arXiv:2304.02981 [cs]

4. Liu, J., Chen, Y., Tan, B., Dillig, I., Feng, Y.: Learning Contract Invariants
Using Reinforcement Learning. In: Proceedings of the 37th IEEE/ACM In-
ternational Conference on Automated Software Engineering. pp. 1–11. ASE
’22, Association for Computing Machinery, New York, NY, USA (Jan 2023).
https://doi.org/10.1145/3551349.3556962, https://dl.acm.org/doi/10.1145
/3551349.3556962

5. Liu, Y., Zhang, C., Li., Y.: Automated Invariant Generation for Solidity Smart
Contracts (Dec 2023). https://doi.org/10.48550/arXiv.2401.00650, http://arxiv.
org/abs/2401.00650, arXiv:2401.00650 [cs]

6. Morello, G., Eshghie, M., Bobadilla, S., Monperrus, M.: DISL: Fueling Re-
search with A Large Dataset of Solidity Smart Contracts (Mar 2024).
https://doi.org/10.48550/arXiv.2403.16861

7. Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J.,
Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer,
C.C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar, F., Touvron, H.,
Martin, L., Usunier, N., Scialom, T., Synnaeve, G.: Code Llama: Open Foundation
Models for Code (Aug 2023). https://doi.org/10.48550/arXiv.2308.12950

https://docs.soliditylang.org/en/latest/
https://docs.soliditylang.org/en/latest/
https://doi.org/10.1145/3597503.3623302
http://arxiv.org/abs/2304.02981
https://doi.org/10.1145/3551349.3556962
https://dl.acm.org/doi/10.1145/3551349.3556962
https://dl.acm.org/doi/10.1145/3551349.3556962
https://doi.org/10.48550/arXiv.2401.00650
http://arxiv.org/abs/2401.00650
http://arxiv.org/abs/2401.00650
https://doi.org/10.48550/arXiv.2403.16861
https://doi.org/10.48550/arXiv.2308.12950


Smart Contract Invariant Synthesis and Mining 3

8. Schneider, F.B.: Enforceable security policies | ACM Transactions on Information
and System Security, https://dl.acm.org/doi/10.1145/353323.353382

9. Silva, A., Fang, S., Monperrus, M.: RepairLLaMA: Efficient Repre-
sentations and Fine-Tuned Adapters for Program Repair (Dec 2023).
https://doi.org/10.48550/arXiv.2312.15698

10. Sun, Y., Wu, D., Xue, Y., Liu, H., Wang, H., Xu, Z., Xie, X., Liu, Y.: GPTScan: De-
tecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program
Analysis (Dec 2023). https://doi.org/10.48550/arXiv.2308.03314

11. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Computing Surveys (CSUR) 54(7), 1–38 (2021)

12. Wang, S.J., Pei, K., Yang, J.: SMARTINV: Multimodal Learning for Smart
Contract Invariant Inference. pp. 125–125. IEEE Computer Society (Feb 2024).
https://doi.org/10.1109/SP54263.2024.00126, https://www.computer.org/csdl/
proceedings-article/sp/2024/313000a126/1Ub23GNTAeQ, iSSN: 2375-1207

13. Zhou, L., Xiong, X., Ernstberger, J., Chaliasos, S., Wang, Z., Wang, Y., Qin, K.,
Wattenhofer, R., Song, D., Gervais, A.: SoK: Decentralized Finance (DeFi) Attacks
(Apr 2023). https://doi.org/10.48550/arXiv.2208.13035, http://arxiv.org/abs/
2208.13035, arXiv:2208.13035 [cs]

https://dl.acm.org/doi/10.1145/353323.353382
https://doi.org/10.48550/arXiv.2312.15698
https://doi.org/10.48550/arXiv.2308.03314
https://doi.org/10.1109/SP54263.2024.00126
https://www.computer.org/csdl/proceedings-article/sp/2024/313000a126/1Ub23GNTAeQ
https://www.computer.org/csdl/proceedings-article/sp/2024/313000a126/1Ub23GNTAeQ
https://doi.org/10.48550/arXiv.2208.13035
http://arxiv.org/abs/2208.13035
http://arxiv.org/abs/2208.13035

	Smart Contract Invariant Synthesis and Mining

