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1 Introduction

A smart contract is a reactive program that is deployed as the immutable code
section of an account on a distributed ledger (e.g. blockchain). Smart contracts are
used to implement a contractual agreement between multiple parties. Therefore,
they are akin to special business processes specifying contractual agreements
on actions to be carried out by different roles [6, 9, 14]. These contracts offer
advantages such as uncompromised (automated) execution even without a trusted
party. However, they can also be complex and difficult to design and understand,
a problem exacerbated by the fact that the code section of smart contracts cannot
be modified once deployed.

Like regular software, smart contracts embody common best practices as
design patterns [11]. In a normal business process environment, different roles
collaborate to achieve a common business goal. In contrast, different roles in a
smart contract typically have adversarial interests. Therefore, smart contracts
introduce new types of patterns of behavior, which have so far only been informally
described [7,10,15,16]. To provide an unambiguous understanding of the patterns
that can also provide the basis for formal specifications, we set out to extend
the study and formalization of process patterns to include these smart contract
patterns.

We use DCR graphs [12,13] capture and formalize the mentioned patterns.
DCR graphs is a established declarative business process notation that has been
extended with data [12], time [12], and sub-processes [13]. DCR graphs visually
capture important properties such as the partial ordering of events, roles of
contract users, and temporal function attributes in smart contracts. Using DCR
graphs, it is possible to represent a smart contract with a clear and concise model
that is more expressive and comprehensive than other types of models.

Our high-level design patterns demonstrate how a system should behave
rather than be implemented. The behavior is described as restrictions on
interface-level of smart contracts. It is therefore possible to use our designs as a
platform- and language-independent modeling before the contract development.
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Our models tell what the users interacting with the smart contract can/cannot
do. Activities in our models match the transactional semantics of blockchain
as an activity execution in DCR model can be mapped to a successful/mined
transaction in blockchain.

Further, DCR models are useful for analysis. We show that using DCR
graphs facilitates the development of correct and reliable smart contracts by
providing a clear and easy-to-understand specification. This specification can be
used to monitor the smart contract interactions both during and post contract
deployment. We demonstrate that our tool HighGuard [8] can detect and flag
malicious interactions given the DCR model of the contract.

2 Smart Contract Design Patterns Formalization

We systematically identify and distinguish 15 high-level design patterns from
low-level (implementation-specific) patterns in smart contracts. We classify these
patterns into four different categories in Fig. 1.
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Fig. 1: Classification of smart contract high-level design patterns.

We demonstrate how one can capture the design of a full smart contract by
modeling three complete contracts, not just a design pattern, with the help of
DCR graphs. The modeled contracts use in total six of the design pattern models
from this paper, which helps to demonstrate the combinability of pattern models
to shape the final design of the contract.
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3 Runtime Monitoring Using DCR Model

We present HighGuard [8] (Fig. 2), a runtime monitoring framework that leverages
DCR graphs to provide runtime verification of smart contract execution. By
harnessing runtime information, runtime verification techniques typically achieve
significantly less false alarms compared to static analysis techniques. While
the performance overhead of runtime verification is a drawback especially in
blockchain ecosystem, where runtime is expensive, we mitigate this concern by
executing the monitor off-chain. Nevertheless, HighGuard is an online monitor,
as it observes the transactions as they are appended to the blockchain in near real-
time. It persistently monitors the Ethereum network, capturing events emitted
by the contract and verifying their adherence to the contract’s DCR specification.
Should any deviation from the specification be detected, HighGuard generates
an alert.
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Fig. 2: HighGuard system architecture

Our usage of DCR graphs to model smart contracts and our focus on high-
level rather than low-level properties allows us to capture the key semantics of
the contract succinctly. We verify properties (and likewise lack of vulnerabilities
pertaining to these properties) related to roles and access control [1, 2], partial
ordering of actions (function calls and transaction execution) [3], as well as
time-based vulnerabilities [4, 5].

Furthermore, not being concerned with low-level patterns and properties lets
our approach remain cross-platform and not tied to the features and limitations
of a certain smart contract execution environment.
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